We discuss a general notion of quantum correlations in fermionic or bosonic indistinguishable particles. Our approach is mainly based on the identification of the algebra of single-particle observables, which allows us to devise an activation protocol in which the quantumness of correlations in the system leads to a unavoidable creation of entanglement with the measurement apparatus. Using the distillable entanglement, or the relative entropy of entanglement, as entanglement measure, we show that our approach is equivalent to the notion of minimal disturbance in a single-particle von Neumann measurement, also leading to a geometrical approach for its quantification.