The mechanized tunnel construction is carried out by tunnel boring machines, in which the soil in front of the working face is removed, and the tunnel lining is carried out with shotcrete or the setting of segments and their back injection. Advancements in this field aim towards increase of the excavation efficiency and increase of the tool lifetime, especially in rock-dominated grounds. The latter is achieved by understanding the wear mechanisms abrasion and surface-fatigue, and by knowledge of the microstructure-property relation of the utilized materials. Improvements for tool concepts are derived, based on experiments and simulations. A key parameter towards efficient rock excavation is the shape of the cutting edge of the utilized disc cutters. Sharp cutting edges have proven to generate higher rock excavation rates compared to blunt ones. The compressive strength of the utilized steel has to be high, to inhibit plastic deformation and thereby to maintain sharp cutting edges. This requirement competes with the demand for toughness, which is necessary to avoid crack-growth in the case of cyclic loading. Solutions for this contradiction lie in specially designed multiphase microstructures, containing both hard particles and ductile microstructural constituents. Besides adapting the alloying concept, these required microstructures and the associated properties can be adjusted by specific heat-treatments.