Vertical Axis Wind Turbines (VAWTs) are characterized by complex and unsteady flow patterns resulting in considerable challenges for both numerical simulations and measurements describing the phenomena involved. In this study, a 3D Actuator Line Model (ALM) is compared to a 2D and a 3D Vortex Model, and they are validated using the normal forces measurements on a blade of an operating 12 kW VAWT, which is located in an open site in the north of Uppsala, Sweden. First, the coefficient power ( C P ) curve of the device has been simulated and compared against the experimental one. Then, a wide range of operational conditions for different tip speed ratios (TSRs), with λ = 1.84, 2.55, 3.06, 3.44, 4.09 and 4.57 were investigated. The results showed descent agreement with the experimental data for both models in terms of the trend and magnitudes. On one side, a slight improvement for representing the normal forces was achieved by the ALM, while the vortex code performs better in the simulation of the C P curve. Similarities and discrepancies between numerical and experimental results are discussed.