2019
DOI: 10.29303/emj.v1i2.26
|View full text |Cite
|
Sign up to set email alerts
|

Subgrup Non Trivial Dari Grup Dihedral

Abstract: Grup  dikatakan grup dihedral dengan order , adalah grup yang dibangun oleh dua elemen  dengan sifat . Grup dihedral dinotasikan dengan .  Sama halnya dengan grup yang lain, grup dihedral juga memiliki subgrup. Pada paper ini akan dibahas teorema-teorema yang berkaitan dengan subgrup dihedral, adapun salah satunya hasilnya dapat memperlihatkan jika  prima maka subgrup-subgrup dibagi kedalam 2 macam yaitu subgrup yang mengandung rotasi dan subgrup yang mengandung refleksi sedangkan jika  komposit maka subgrup-s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 0 publications
0
7
0
1
Order By: Relevance
“…In this section, we present some definitions and theorems that are needed in this research. Definition 1 [15] Group 𝐺 is said to be a dihedral group of order 2𝑛, 𝑛 ≥ 3, and 𝑛 ∈ ℕ, is a group composed of two elements 𝑎, 𝑏 ∈ 𝐺 with the property…”
Section: Preliminariesmentioning
confidence: 99%
“…In this section, we present some definitions and theorems that are needed in this research. Definition 1 [15] Group 𝐺 is said to be a dihedral group of order 2𝑛, 𝑛 ≥ 3, and 𝑛 ∈ ℕ, is a group composed of two elements 𝑎, 𝑏 ∈ 𝐺 with the property…”
Section: Preliminariesmentioning
confidence: 99%
“…Theorem 1 [15] Let 𝐷 2𝑛 be a dihedral group with 𝑛 ≥ 3. Then the subset 𝑅 = {𝑒, 𝑎, 𝑎 2 , 𝑎 3 , … , 𝑎 𝑛−1 } ⊆ 𝐷 2𝑛 is a nontrivial subgroup of 𝐷 2𝑛 .…”
Section: Basic Terminologymentioning
confidence: 99%
“…Theorem 4[15] Let 𝐷 2𝑛 be a dihedral group with 𝑛 ≥ 3 and 𝑛 = 𝑝 1 𝑝 2 𝑝 3 … 𝑝 𝑘 , with 𝑝 𝑖 are a distinct prime number.Then for 𝑖 ∈ {1,2, … , 𝑘} and 𝑗 ∈ {0,1,2, … , 𝑝 𝑖 − 1}, the subset…”
mentioning
confidence: 99%
“…Dihedral groups are applied by mineralogists and chemists to study molecular structures or crystal structures based on symmetry. Syarifudin and Wardhana have classify many types of subgroups in the dihedral group 𝐷 2𝑛 [9].…”
Section: Introductionmentioning
confidence: 99%