The Coprime graph is a graph from a finite group that is defined based on the order of each element of the group. In this research, we determine the coprime graph of generalized quaternion group Q_(4n) and its properties. The method used is to study literature and analyze by finding patterns based on some examples. The first result of this research is the form of the coprime graph of a generalized quaternion group Q_(4n) when n = 2^k, n an odd prime number, n an odd composite number, and n an even composite number. The next result is that the total of a cycle contained in the coprime graph of a generalized quaternion group Q_(4n) and cycle multiplicity when is an odd prime number is p-1.Keywords: Coprime graph, generalized quaternion group, order, path AbstrakGraf koprima merupakan graf dari dari suatu grup hingga yang didefiniskan berdasarkan orde dari masing-masing elemen grup tersebut. Pada penelitian ini akan dibahas tentang bentuk graf koprima dari grup generalized quaternion Q_(4n). Metode yang digunakan dalam penelitian ini adalah studi literatur dan melakukan analisis berdasarkan pola yang ditemukan dalam beberapa contoh. Adapun hasil pertama dari penelitian adalah bentuk graf koprima dari grup generalized quaternion Q_(4n) untuk kasus n = 2^k, n bilangan prima ganjil ganjil, n bilangan komposit ganjil dan n bilangan komposit genap. Hasil selanjutnya adalah total sikel pada graf koprima dari grup generalized quaternion dan multiplisitas sikel ketika bilangan prima ganjil adalah p-1.Kata kunci: Graf koprima, grup generalized quternion, orde
Graph theory is one of the topics in mathematics that is quite interesting to study because it is applicable and can be combined with other mathematical topics such as group theory. The combination of graph theory and group theory is that graphs can be used to represent a group. An example of a graph is a power graph. A power graph of the group is defined as a graph whose vertex set is all elements of and two distinct vertices and are connected if and only if or for a positive integer x and y. In this study, the author discusses the power graph of the dihedral group The results obtained from this study are the power graph of the dihedral group where with prime numbers and an natural number is a graph consisting of two non-disjoint subgraphs, namely complete subgraphs and star subgraphs. And we find that its radius and diameter are 1 and 2.
The Coprime graph of group G denoted Γ G is a graph with vertices is an element of G, and two distinct vertices are adjacent when its order relative prime. In 2020, Gazir et al. give some characterizations of Γ D 2n for n a prime power. The method that uses in this paper is deductive proof by taking some example of a coprime graph of D 2n , then generalized the characterization of example. This paper gives some characteristics of the coprime graph of a dihedral group for more general cases. One of the result, Γ D 2n is a multipartite graph with girth 3, radius 1, and diameter 2.
The intersection graph of a finite group G is a graph (V,E) where V is a set of all non-trivial subgroups of G and E is a set of edges where two distinct subgroups H_i , H_j are said to be adjacent if and only if H_i \cap H_j \neq {e} . This study discusses the intersection graph of a dihedral group D_{2n} specifically the subgraph, degree of vertices, radius, diameter, girth, and domination number. From this study, we obtained that if n=p^2 then the intersection graph of D_{2n} is containing complete subgraph K_{p+2} and \gamma(\Gamma_{D_{2n}})=p.
Grup dikatakan grup dihedral dengan order , adalah grup yang dibangun oleh dua elemen dengan sifat . Grup dihedral dinotasikan dengan . Sama halnya dengan grup yang lain, grup dihedral juga memiliki subgrup. Pada paper ini akan dibahas teorema-teorema yang berkaitan dengan subgrup dihedral, adapun salah satunya hasilnya dapat memperlihatkan jika prima maka subgrup-subgrup dibagi kedalam 2 macam yaitu subgrup yang mengandung rotasi dan subgrup yang mengandung refleksi sedangkan jika komposit maka subgrup-subgrupnya dibagi kedalam 3 macam subgrup yaitu subgrup yang mengandung rotasi, refleksi dan gabungannya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.