2022
DOI: 10.1002/nbm.4746
|View full text |Cite
|
Sign up to set email alerts
|

Subject‐specific optimization of background suppression for arterial spin labeling magnetic resonance imaging using a feedback loop on the scanner

Abstract: Background suppression (BGS) in arterial spin labeling (ASL) magnetic resonance imaging leads to a higher temporal signal-to-noise ratio (tSNR) of the perfusion images compared with ASL without BGS. The performance of the BGS, however, depends on the tissue relaxation times and on inhomogeneities of the scanner's magnetic fields, which differ between subjects and are unknown at the moment of scanning. Therefore, we developed a feedback loop (FBL) mechanism that optimizes the BGS for each subject in the scanner… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 33 publications
0
0
0
Order By: Relevance