2017
DOI: 10.1103/physreve.95.032502
|View full text |Cite
|
Sign up to set email alerts
|

Subphase transitions in first-order aggregation processes

Abstract: In this paper, we investigate the properties of aggregation transitions in the context of generic coarse-grained homopolymer systems. By means of parallel replica-exchange Monte Carlo methods, we perform extensive simulations of systems consisting of up to 20 individual oligomer chains with five monomers each. Using the tools of the versatile microcanonical inflection-point analysis, we show that the aggregation transition is a first-order process consisting of a sequence of subtransitions between intermediate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
5
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 71 publications
0
5
0
Order By: Relevance
“…In this context, it has been common to analyze first-order-like transitions in finite systems by means of Maxwell's construction, where the backbending region in the transition regime of the energetic temperature curve is replaced by a flat segment. However, Maxwell construction only applies to single transitions of first order and can neither be used if the transition is composed or accompanied by subphase transitions [10], nor if it is of higher order. However, by replacing the "flatness" idea of Maxwell's construction by the more general principle of minimal sensitivity [11], these issues can be resolved as will be discussed in the following.…”
mentioning
confidence: 99%
“…In this context, it has been common to analyze first-order-like transitions in finite systems by means of Maxwell's construction, where the backbending region in the transition regime of the energetic temperature curve is replaced by a flat segment. However, Maxwell construction only applies to single transitions of first order and can neither be used if the transition is composed or accompanied by subphase transitions [10], nor if it is of higher order. However, by replacing the "flatness" idea of Maxwell's construction by the more general principle of minimal sensitivity [11], these issues can be resolved as will be discussed in the following.…”
mentioning
confidence: 99%
“…A different classification, known as microcanonical analysis, has been proposed by Gross [2,3] and it identifies PTs with the presence of convex region of microcanonical entropy. Recently, Bachmann et al [4][5][6][7][8][9][10] developed a novel classification of PTs called microcanonical inflection-point analysis. The signature of a PT is represented by a least-sensitive inflection point in the derivatives of the microcanonical entropy distinguishing between independent and dependent PTs.…”
Section: Introductionmentioning
confidence: 99%
“…Examples of computational studies include not only lattice [17][18][19][20][21][22][23][24] and magnetic models 25,26 , but also more sophisticated biopolymeric systems, in particular, models for peptide aggregation [27][28][29][30][31][32][33] , protein dimerization 34 , homopolymer collapse [35][36][37] , protein folding [38][39][40][41][42][43][44][45][46][47][48] , and polymer adsorption [49][50][51] .…”
Section: Introductionmentioning
confidence: 99%