The operability of the bearing assembly, which ensures the operation of the turbocharger at different speeds of its rotor, determines the reliability of the turbocharger as a whole. In this regard, the condition of the turbocharger bearing assembly determines the performance of the entire turbocharger. The purpose of the research is to justify the parameter that determines the performance of the turbocharger and a comparative assessment of changes in the state of turbochargers with a standard lubrication system and when using individual bearing assembly lubrication systems. The main factors affecting the state of the turbocharger bearing assembly, and hence the length of the rotor rotation by inertia after the engine stops, are considered to be: the increase in the clearance in the bearing assembly, the speed of rotation of the turbocharger rotor before the engine stops, and the time of pressure drop in the bearing assembly to zero after the engine stops. To obtain dependences describing the effect of the gap in the turbocharger bearing, the time of pressure drop in its lubrication system after the engine stops, and the change in the duration of rotation of the turbocharger rotor by inertia in dynamics, we conducted experimental studies. The experiment involved vehicles with a standard lubrication system and with an individual lubrication system for the turbocharger bearing assembly. The data was sample along the main diagonal of the matrix of experimental indicators. The dependences of the effect of the gap and the time of pressure drop in the bearing assembly on the duration of rotation of the rotor of the turbocharger by inertia after stopping the engine, at the speed of rotation of the rotor before stopping the engine 10000, 25000 and 40000 min-1 are obtained. A comparative analysis of this indicator is given for turbochargers with a standard and individual lubrication system of the bearing assembly, which shows that the duration of rotation of the rotor by inertia increases from 45 s (standard lubrication mode) to 90 s (with an individual lubrication system). This gives us reason to believe that the wear rate of the bearing will decrease by half during operation