“…Up to now, many publications in the open literature have been found in synthesis of these types of compounds, and a well known method for such a synthesis constitutes the Baeyer-Villiger oxidation of ketones [3,4]. Traditional methods for performing such a transformation generally involve the use of stoichiometric amount of the strongest oxidizing reagents (e.g., trifluoroperacetic acid, peroxyacetic acid, and perbenzoic acid) [5][6][7][8], and suffer from considerable drawbacks such as low yield, harsh or delicate reaction condition, and a large amount of waste by-products. Various reagents employed as the oxygen donors have been developed for this conversion include sodium perborate [9], potassium peroxydisulfate (K 2 S 2 O 8 ) [10,11], sodium perborate (NaBO 3 ) [11], m-CPBA [12,13], NADPH [14,15], phenylacetone monooxygenase (PAMO) [16], H 2 O 2 [17][18][19][20][21][22], oxone [23], h-SiO 2 ·KHSO 5 [24], and other complexes [25][26][27][28][29][30].…”