Human DNA topoisomerase IIα is a biological nanomachine
that
regulates the topological changes of the DNA molecule and is considered
a prime target for anticancer drugs. Despite intensive research, many
atomic details about its mechanism of action remain unknown. We investigated
the ATPase domain, a segment of the human DNA topoisomerase IIα,
using all-atom molecular simulations, multiscale quantum mechanics/molecular
mechanics (QM/MM) calculations, and a point mutation study. The results
suggested that the binding of ATP affects the overall dynamics of
the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors
the dissociative substrate-assisted reaction mechanism with the catalytic
Glu87 serving to properly position and polarize the lytic water molecule.
The point mutation study complemented our computational results, demonstrating
that Lys378, part of the important QTK loop, acts as a stabilizing
residue. The work aims to pave the way to a deeper understanding of
these important molecular motors and to advance the development of
new therapeutics.