Thin silicon nitride (Si(1_x)N(x)) films were synthesized without substrate heating by means of reactive argon-ion sputtering of either silicon or a silicon nitride target in the 1000-1500-eV energy range at a nitrogen partial pressure of 1.3 × 10(-2) Pa and with simultaneous nitrogen ion-assisted bombardment in the 300-500-eV low energy range. The extinction coefficient and refractive index of the films were directly dependent on the N(+) ion-to-atom arrival ratio, assisted ion energy, film growth rate, and indicated a correlation with film stoichiometry and disorder. Si(3)N(4) films were obtained for N(+) ion/Si atom arrival ratios from 0.6 to 1.7 and for different Si:N atom arrival rates and had a refractive index as high as 2.04 (633 nm) and a low hydrogen content as indicated by IR spectra.