The constitutive model frequently used in numerical calculations of tunnel excavation is linear-elastic perfectly plastic with a Mohr-Coulomb (MC) failure criterion. Generally, this leads to shallower and wider surface settlement troughs than those observed experimentally. It is therefore necessary to use adapted constitutive models for the design of underground works. In this paper, three constitutive models are implemented in a two-dimensional simulation of an underground excavation in plane strain: a linear-elastic perfectly plastic model (the MC model), an elastoplastic model with isotropic hardening [the hardening soil (HS) model, Schanz et al., Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp. 281-290, 1999 and an extension of this model which implies an evolution of the stiffness modulus in the small-strain range according to the strain level (the HS model with smallstrain stiffness ''HS-Small'', Benz, Small-strain stiffness of soils and its numerical consequences. Ph.D. thesis, Universitat Stuttgart, 189 pp., 2007). The study is based on the results of drained triaxial compression tests representing an overconsolidated clay (Gasparre, Advanced laboratory characterisation of London clay. Ph.D. thesis, Imperial College London, 598 pp., 2005); and is then applied to a shallow tunnel. The impact of the constitutive model is highlighted as well as the limits of the simplest constitutive model.