Viscoelastic surfactant (VES) fracture fluids were developed as a nondamaging alternative to conventional polymer-based fluids. However, the viscosity performance of typical VES fluids is dramatically reduced at high temperature. Therefore, these fluids are typically limited to treat relatively lowtemperature formations unless foamed with nitrogen or carbon dioxide. Recent laboratory work has shown that viscosity alone may not accurately assess proppant transport. Thus, combination of rotational and oscillatory measurements to determine the fluid viscous and elastic properties can better predict whether the fluid can be applied successfully in the field.The present study was conducted to introduce a new Gemini VES system that can gel and maintain useful viscosity up to 275°F, which can provide additional downhole benefits. Dynamic and static proppant settling tests were conducted using a high-pressure/high-temperature visualization cell to confirm the effect of elastic properties of this fluid on proppant settling. Finally, proppant settling tests were conducted with three proppant types of the same size, but different density and shape at a range of concentrations.Experimental results show that the surfactant gel behaved as an elastic material (elastic regime), where the elastic modulus (G') was dominant over the viscous modulus (G") during the tested range of frequency. This behavior gives perfect proppant transport properties. At temperature less than 225°F, Values of G= were independent of the frequency and/or shear rate values, while G" increased with increasing frequency and/or shear rate. At higher temperature, both G= and G" increased with increasing frequency and/or shear rate. This gives a good proppant-carrying capacity during dynamic conditions (mixing and injection) with a small pressure drop. The addition of an internal liquid breaker increases the viscous regime with time and temperature. When elastic regime dominates, 100% proppant suspension was confirmed for at least two hours at static and dynamic conditions and temperatures in the range of 75 to 250°F.