This study aims to investigate the structural behavior and load-carrying capacity of prefabricated shoring systems. The structural behavior and performance of shoring systems are influenced by the buckling of vertical members, where the compressive force acts as the main load. The buckling strength of a vertical member is sensitive to not only the material and geometrical properties of members but also the connection details between members, presence or absence of braces, and stiffness ratio between members. Therefore, in this study, the structural behavioral characteristics of the individual post member and the entire system are investigated by considering the structural details through eigenvalue and nonlinear finite element analyses. On the basis of the analytical studies, it was confirmed that the boundary condition of the vertical member, rotational and horizontal stiffnesses, and eccentricity condition of the end, which are directly affected by the compressive force acting on the prefabricated shoring system, have a direct effect on the elastic buckling strength. In addition, it was determined that factors such as whether the braces were installed, rotational stiffness of the vertical–horizontal member connection, and the number of installation stages affected the overall strength of the structure. According to the structural analysis results, the assembled structure was reduced by 92.9% and 82.2% compared to the elastic buckling strength of a single member as the height increased to two and three stories. In addition, when the bracing member was not installed, 12.1% and 23.6% strength reduction was confirmed as the elastic buckling strength increased by two and three stories compared to the case where the bracing member was installed. Consequently, the necessity of a whole structural performance evaluation technique was confirmed for a more practical structural performance evaluation.