Although highly selective
complexes for the cross-metathesis of
olefins, particularly oriented toward the productive metathesis of
Z
-olefins, have been reported in recent years, there is
a constant need to design and prepare new and improved catalysts for
this challenging reaction. In this work, guided by density functional
theory (DFT) calculations, the performance of a Ru-based catalyst
chelated to a sulfurated pincer in the olefin metathesis was computationally
assessed. The catalyst was designed based on the Hoveyda–Grubbs
catalyst (SIMes)Cl
2
Ru(=CH–o–O
i
PrC
6
H
4
) through the substitution
of chlorides with the chelator bis(2-mercaptoimidazolyl)methane. The
obtained thermodynamic and kinetic data of the initiation phase through
side- and bottom-bound mechanisms suggest that this system is a versatile
catalyst for olefin metathesis, as DFT predicts the highest energy
barrier of the catalytic cycle of ca. 20 kcal/mol, which is comparable
to those corresponding to the Hoveyda–Grubbs-type catalysts.
Moreover, in terms of the stereoselectivity evaluated through the
propagation phase in the metathesis of propene–propene to 2-butene,
our study reveals that the
Z
isomer can be formed
under a kinetic control. We believe that this is an interesting outcome
in the context of future exploration of Ru-based catalysts with sulfurated
chelates in the search for high stereoselectivity in selected reactions.