Current research is focused on developing active materials through surface functionalization, porosity, composites, and doping for ultrafast electric double layer capacitors (EDLCs). In this study, deviating from existing strategies focused on active materials, we designed tunable 3D microgrid-patterned (MP) surface morphologies on Ni foams used as current collectors using SUS meshes as rigid stamps during roll pressing. The surface geometries of the MP-Ni foams were controlled to standard mesh scales of 24, 40, and 60 (denoted as 24MP-Ni, 40MP-Ni, and 60MP-Ni, respectively). The three MP-Ni samples with different microgrid sizes presented different surface geometries, such as root-mean-square roughness (Rrms), skewness roughness (Rsk), and width/depth scales of the microgrid patterns. Consequently, 40MP-Ni demonstrated an optimized surface geometry with high Rrms (35.4 μm) and Rsk (−0.19) values, which facilitated deep slurry infiltration and increased its contact area with the active material. Surface optimization of the MP-Ni enabled ultrafast and reversible charge transport kinetics owing to its relaxed electron transfer resistance and robust adhesion to the active material compared with bare Ni foam. EDLC electrodes with 40MP-Ni achieved an ultrafast-rate capability (96.0 F/g at 20 A/g) and ultrafast longevity (101.9% capacity retention after 5000 cycles at 5 A/g) without specific modification of active material.