Context. The last decade showed an impressive observational effort from the photometric and spectroscopic point of view for ancient stellar clusters in our Galaxy and beyond, leading to important and sometimes surprising results. Aims. The theoretical interpretation of these new observational results requires updated evolutionary models and isochrones spanning a wide range of chemical composition so that the possibility of multipopulations inside a stellar cluster is also taken also into account. Methods. With this aim we built the new "Pisa Stellar Evolution Database" of stellar models and isochrones by adopting a welltested evolutionary code (FRANEC) implemented with updated physical and chemical inputs. In particular, our code adopts realistic atmosphere models and an updated equation of state, nuclear reaction rates and opacities calculated with recent solar elements mixture. Results. A total of 32 646 models have been computed in the range of initial masses 0.30 ÷ 1.10 M for a grid of 216 chemical compositions with the fractional metal abundance in mass, Z, ranging from 0.0001 to 0.01, and the original helium content, Y, from 0.25 to 0.42. Models were computed for both solar-scaled and α-enhanced abundances with different external convection efficiencies. Correspondingly, 9720 isochrones were computed in the age range 8÷15 Gyr, in time steps of 0.5 Gyr. The whole database is available to the scientific community on the web. Models and isochrones were compared with recent calculations available in the literature and with the color-magnitude diagram of selected Galactic globular clusters. The dependence of relevant evolutionary quantities, namely turn-off and horizontal branch luminosities, on the chemical composition and convection efficiency were analyzed in a quantitative statistical way and analytical formulations were made available for reader's convenience. These relations can be useful in several fields of stellar evolution, e.g. evolutionary properties of binary systems, synthetic models for simple stellar populations and for star counts in galaxies, and chemical evolution models of galaxies.