We use high-precision photometry of red-giant-branch (RGB) stars in 57 Galactic globular clusters (GCs), mostly from the "Hubble Space Telescope (HST ) UV Legacy Survey of Galactic globular clusters", to identify and characterize their multiple stellar populations. For each cluster the pseudo two-color diagram (or 'chromosome map') is presented, built with a suitable combination of stellar magnitudes in the F275W, F336W, F438W and F814W filters that maximizes the separation between multiple populations. In the chromosome map of most GCs (Type I clusters), stars separate in two distinct groups that we identify with the first (1G) and the second generation (2G). This identification is further supported by noticing that 1G stars have primordial (oxygen-rich, sodium-poor) chemical composition, whereas 2G stars are enhanced in sodium and depleted in oxygen. This 1G-2G separation is not possible for a few GCs where the two sequences have apparently merged into an extended, continuous sequence. In some GCs (Type II clusters) the 1G and/or the 2G sequences appear to be split, hence displaying more complex chromosome maps. These clusters exhibit multiple SGBs also in purely optical color-magnitude diagrams, with the fainter SGB joining into a red RGB which is populated by stars with enhanced heavy-element abundance. We measure the RGB width by using appropriate colors and pseudo-colors. When the metallicity dependence is removed, the RGB width correlates with the cluster mass. The fraction of 1G stars ranges from ∼8% to ∼67% and anticorrelates with the cluster mass, indicating that incidence and complexity of the multiple population phenomenon both increase with cluster mass.
We study the formation and dynamical evolution of clusters with multiple stellar generations. Observational studies have found that some globular clusters host a population of second generation (SG) stars which show chemical anomalies and must have formed from gas containing matter processed in the envelopes of first generation (FG) cluster stars. We study the SG formation process by means of one‐dimensional (1D) hydrodynamical simulations, starting from a FG already in place and assuming that the SG is formed by the gas ejected by the asymptotic giant branch (AGB) stars. This gas collects in a cooling flow into the cluster core, where it forms SG stars. The SG subsystem emerging from this process is initially strongly concentrated in the cluster innermost regions and its structural properties are largely independent of the FG initial properties. We also present the results of a model in which pristine gas contributes to the SG formation. In this model a very helium‐rich SG population and one with a moderate helium enrichment form; the resulting SG bimodal helium distribution resembles that observed for SG stars in NGC 2808. By means of N‐body simulations, we then study the two‐population cluster dynamical evolution and mass loss. In our simulations, a large fraction of FG stars are lost early in the cluster evolution due to the expansion and stripping of the cluster outer layers resulting from early mass loss associated with FG supernova (SN) ejecta. The SG population, initially concentrated in the innermost cluster regions, is largely unscathed by this early mass loss, and this early evolution leads to values of the number ratio of SG to FG stars consistent with observations. We also demonstrate possible evolutionary routes leading to the loss of most of the FG population, leaving an SG‐dominated cluster. As the cluster evolves and the two populations mix, the local ratio of SG to FG stars, initially a decreasing function of radius, tends to a constant value in the inner parts of the cluster. Until mixing is complete, the radial profile of this number ratio is characterized by a flat inner part and a declining portion in the outer cluster regions.
Abstract. High dispersion spectra (R ∼ > 40 000) for a quite large number of stars at the main sequence turn-off and at the base of the giant branch in NGC 6397 and NGC 6752 were obtained with the UVES on Kueyen (VLT UT2). The [Fe/H] values we found are −2.03 ± 0.02 ± 0.04 and −1.42 ± 0.02 ± 0.04 for NGC 6397 and NGC 6752 respectively, where the first error bars refer to internal and the second ones to systematic errors (within the abundance scale defined by our analysis of 25 subdwarfs with good Hipparcos parallaxes). In both clusters the [Fe/H]'s obtained for TO-stars agree perfectly (within a few percent) with that obtained for stars at the base of the RGB. The [O/Fe] = 0.21 ± 0.05 value we obtain for NGC 6397 is quite low, but it agrees with previous results obtained for giants in this cluster. Moreover, the star-to-star scatter in both O and Fe is very small, indicating that this small mass cluster is chemically very homogenous. On the other hand, our results show clearly and for the first time that the O-Na anticorrelation (up to now seen only for stars on the red giant branches of globular clusters) is present among unevolved stars in the globular cluster NGC 6752, a more massive cluster than NGC 6397. A similar anticorrelation is present also for Mg and Al, and C and N. It is very difficult to explain the observed Na-O, and Mg-Al anticorrelation in NGC 6752 stars by a deep mixing scenario; we think it requires some non internal mechanism.
We present yields from stars of mass in the range M ⊙ M 8M ⊙ of metallicities Z = 3 × 10 −4 and Z = 8 × 10 −3 , thus encompassing the chemistry of low-and high-Z Globular Clusters. The yields are based on full evolutionary computations, following the evolution of the stars from the pre-Main Sequence through the Asymptotic Giant Branch phase, until the external envelope is lost.Independently of metallicity, stars with M < 3M ⊙ are dominated by Third Dredge-Up, thus ejecting into their surroundings gas enriched in carbon and nitrogen. Conversely, Hot Bottom Burning is the main responsible for the modification of the surface chemistry of more massive stars, whose mass exceeds 3M ⊙ : their gas shows traces of proton-capture nucleosynthesis.The extent of Hot Bottom Burning turns out to be strongly dependent on metallicity. Models with Z = 8×10 −3 achieve a modest depletion of oxygen, barely reaching −0.3 dex, and do not activate the Mg-Al chain. Low-Z models with Z = 3 × 10 −4 achieve a strong nucleosynthesis at the bottom of the envelope, with a strong destruction of the surface oxygen and magnesium; the most extreme chemistry is reached for models of mass ∼ 6M ⊙ , where δ[O/Fe]∼ −1.2 and δ[Mg/Fe]∼ −0.6. Sodium is found to be produced in modest quantities at these low Z's, because the initial increase due to the combined effect of the second dredge-up and of 22 Ne burning is compensated by the later destruction via proton capture. A great increase by a factor ∼ 10 in the aluminium content of the envelope is also expected. These results can be used to understand the role played by intermediate mass stars in the self-enrichment scenario of globular clusters: the results from spectroscopic investigations of stars belonging to the second generation of clusters with different metallicity will be used as an indirect test of the reliability of the present yields.The treatment of mass loss and convection are confirmed as the main uncertainties affecting the results obtained in the context of the modeling of the thermal pulses phase. An indirect proof of this comes from the comparison with other investigations in the literature, based on a different prescription for the efficiency of convection in transporting energy and using a different recipe to determine the mass loss rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.