Publication informationThe European Physical Journal B, 85 (3):Publisher Abstract. We study the emergence of oscillatory self-sustained behavior in a nonequilibrium Nambu system that features an exchange between different kinetical and potential energy forms. To this end, we study the Yamaleev oscillator in a canonical-dissipative framework. The bifurcation diagram of the nonequilibrium Yamaleev oscillator is derived and different bifurcation routes that are leading to limit cycle dynamics and involve pitchfork and Hopf bifurcations are discussed. Finally, an analytical expression for the probability density of the stochastic nonequilibrium oscillator is derived and it is shown that the shape of the density function is consistent with the oscillator properties in the deterministic case.