Superabsorbent polymers have important applications in many elds, but insu ciency of water/salt absorbency, water retention, and swelling rate limit its application development. Herein, we fabricated HEC-g-P (AA-co-AMPS)/laterite by aqueous solution polymerization, the structure and morphology of the superabsorbent polymer were characterized by FTIR, SEM and TG/DTG. The optimal water absorbency of the superabsorbent polymer were 1294 g/g, 177 g/g, and 119 g/g in distilled water, tap water, and 0.9 wt% NaCl solution, respectively. The superabsorbent polymer had good water retention and re-swelling properties at different temperatures, and fast water absorption rate, and reached swelling equilibrium at 5 min. The swelling mechanism of the superabsorbent polymer was explained by the pseudo-second-order swelling kinetics model and Ritger-Peppas model. The effect of the amount of hydrogel on the water evaporation rate in soil was studied, and it had a good effect.