Mechanically alloyed Nb3(Al1−xGex) compounds with nominal composition x = 0%, 10%, 15%, 20%, 25% and 30% were synthesized using high-energy ball milling. The effects of Ge content and sintering temperature on the formation of the Nb3Al superconducting phase at a relatively low temperature without the extremely high-temperature rapid heating, quenching and transformation process were studied. The results revealed that Ge doping in Nb3Al improved the formation of the A15 phase at low temperatures, enhanced the superconducting transition temperature (Tc), and refined the grain structure, thus improving the overall superconducting properties. The pinning behavior was also studied for the optimized sample.