Abstract:In this paper, ultra-broadband mid-infrared (MIR) supercontinuum (SC) generation ranging from 2 to 15 μm in As 2 Se 3 photonic crystal fiber (PCF) was investigated numerically by multipole method and the adaptive split-step Fourier method. By choosing different hole sizes and the pitch parameters of the As 2 Se 3 PCF, the optimized nonlinear coefficients and dispersion profile of the fiber in the mid-infrared regime can be obtained. With the ultrafast pump laser centered around 4.3 μm, the broadband SC from 2 to 15 μm can be generated. In the normal dispersion regime, the flatness of the SC can be improved. Moreover, the pulse durations of the pump laser have positive influence on the spectrum broadening as well as the pump peak power.