Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This article establishes a discrete maximum principle (DMP) for the approximate solution of convection–diffusion–reaction problems obtained from the weak Galerkin (WG) finite element method on nonuniform rectangular partitions. The DMP analysis is based on a simplified formulation of the WG involving only the approximating functions defined on the boundary of each element. The simplified weak Galerkin (SWG) method has a reduced computational complexity over the usual WG, and indeed provides a discretization scheme different from the WG when the reaction terms are present. An application of the SWG on uniform rectangular partitions yields some 5‐ and 7‐point finite difference schemes for the second order elliptic equation. Numerical experiments are presented to verify the DMP and the accuracy of the scheme, particularly the finite difference scheme.
A mathematical analysis is established for the weak Galerkin finite element methods for the Poisson equation with Dirichlet boundary value when the curved elements are involved on the interior edges of the finite element partition or/and on the boundary of the whole domain in two dimensions. The optimal orders of error estimates for the weak Galerkin approximations in both the H 1 -norm and the L 2 -norm are established. Numerical results are reported to demonstrate the performance of the weak Galerkin methods on general curved polygonal partitions.
<p style='text-indent:20px;'>A stabilizer free WG method is introduced for the Stokes equations with superconvergence on polytopal mesh in primary velocity-pressure formulation. Convergence rates two order higher than the optimal-order for velocity of the WG approximation is proved in both an energy norm and the <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> norm. Optimal order error estimate for pressure in the <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> norm is also established. The numerical examples cover low and high order approximations, and 2D and 3D cases.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.