“…In recent years, machine learning algorithms have been widely employed for efficient simulations of high dimensional and nonlinear relationships of various hydrological variables in surface and subsurface hydrology. They have been employed to predict streamflow (Wu and Chau, 2010;Rasouli et al, 2012;Senthil Kumar et al, 2013;He et al, 2014;Shortridge et al, 2016;Abdollahi et al, 2017;Singh et al, 2018;Yuan et al, 2018;Adnan et al, 2019bAdnan et al, , 2021bDuan et al, 2020), groundwater and lake water level (Yoon et al, 2011;Tapoglou et al, 2014;Li et al, 2016;Sahoo et al, 2017;Sattari et al, 2018;Malekzadeh et al, 2019;Sahu et al, 2020;Yaseen et al, 2020;Kardan Moghaddam et al, 2021), water quality parameters such as nitrogen, phosphorus, and dissolved oxygen (Chen et al, 2010;Singh et al, 2011;Liu and Lu, 2014;Kisi and Parmar, 2016;Granata et al, 2017;Sajedi-Hosseini et al, 2018;Najah Ahmed et al, 2019;Knoll et al, 2020), soil hydraulic conductivity (Agyare et al, 2007;Das et al, 2012;Elbisy, 2015;Sihag, 2018;Araya and Ghezzehei, 2019;Adnan et al, 2021a), soil moisture (Gill et al, 2006;Ahmad et al, 2010;Coopersmith et al, 2014;…”