2020
DOI: 10.1049/iet-ipr.2019.1108
|View full text |Cite
|
Sign up to set email alerts
|

Support vector machine classification combined with multimodal magnetic resonance imaging in detection of patients with schizophrenia

Abstract: The brain avatar of schizophrenic patients is different from the normal human brain avatar, and it is difficult to overcome the complex environmental effects of the brain through traditional magnetic resonance imaging (MRI). In order to improve the accuracy of MRI in detecting brain information in patients with schizophrenia, this study is based on the support vector machine classification algorithm and combined with multimodal MRI detection method to construct a detection model suitable for patients with schi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 26 publications
0
1
0
2
Order By: Relevance
“…Magnetic Resonance Imaging (MRI) is a medical imaging modality used to visualize the internal organs of the human body. The MRI is widely used for the diagnosis of a broad spectrum of diseases like ischemic stroke [1], Autism Spectrum Disorder (ASD) [2], Parkinson's disease [3], brain tumors [4], Schizophrenia [5], intracranial Tuberculosis [6], pancreatic cancer [7], Osteo Arthritis [8], prostate cancer [9] and Endometriosis [10]. Because of hardware limitations, images obtained from low-field MRI scanners are of low resolution, low acutance, and low contrast.…”
Section: Background and Problem Domainmentioning
confidence: 99%
“…Magnetic Resonance Imaging (MRI) is a medical imaging modality used to visualize the internal organs of the human body. The MRI is widely used for the diagnosis of a broad spectrum of diseases like ischemic stroke [1], Autism Spectrum Disorder (ASD) [2], Parkinson's disease [3], brain tumors [4], Schizophrenia [5], intracranial Tuberculosis [6], pancreatic cancer [7], Osteo Arthritis [8], prostate cancer [9] and Endometriosis [10]. Because of hardware limitations, images obtained from low-field MRI scanners are of low resolution, low acutance, and low contrast.…”
Section: Background and Problem Domainmentioning
confidence: 99%
“…Support Vector Machine (SVM) pertama kali diperkenalkan oleh Vapnik pada tahun 1992 sebagai rangkaian harmonis konsep-konsep unggulan dalam bidang pattern recognition. SVM adalah metode learning machine yang bekerja atas prinsip Structural Risk Minimization (SRM) dengan tujuan menemukan hyperplane terbaik yang memisahkan dua buah class pada input space (Zheng et al, 2020). Konsep SVM dapat dijelaskan secara sederhana sebagai usaha mencari hyperplane terbaik yang berfungsi sebagai pemisah dua buah kelas pada input space.…”
Section: B Support Vector Machine (Svm)unclassified
“…Pada dasarnya, metode ini bekerja dengan cara mendefinisikan atas antara dua kelas dengan jarak maksimal dari data yang terdekat (Rizal, Girsang and Prasetiyo, 2019). SVM adalah metode learning machine yang bekerja atas prinsip Structural Risk Minimization (SRM) dengan tujuan menemukan hyperplane terbaik yang memisahkan dua buah class pada input space (Zheng et al, 2020).…”
Section: Trainingunclassified