2008
DOI: 10.2139/ssrn.1424949
|View full text |Cite
|
Sign up to set email alerts
|

Support Vector Machines (SVM) as a Technique for Solvency Analysis

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
160
0
8

Year Published

2015
2015
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 268 publications
(168 citation statements)
references
References 6 publications
(3 reference statements)
0
160
0
8
Order By: Relevance
“…Parameter yang diperoleh dari hasil pelatihan dengan metode SVM dijamin adalah parameter optimal. Hal ini berbeda jika dibandingkan dengan metode Neural Network dimana bisa terjadi solusi yang diperoleh terjebak dalam minimum lokal [12].…”
Section: B Support Vector Machinesunclassified
See 1 more Smart Citation
“…Parameter yang diperoleh dari hasil pelatihan dengan metode SVM dijamin adalah parameter optimal. Hal ini berbeda jika dibandingkan dengan metode Neural Network dimana bisa terjadi solusi yang diperoleh terjebak dalam minimum lokal [12].…”
Section: B Support Vector Machinesunclassified
“…Beberapa penelitian telah menggunakan SVM untuk berbagai penerapan, diantaranya adalah pada pengenalan citra, analisis medik, ataupun untuk melakukan prediksi. Secara spesifik, Wang merangkum beberapa penelitian yang berkaitan dengan perkembangan SVM beserta penggunaannya [12]. Dalam beberapa penelitian ditunjukkan bahwa SVM adalah metode yang efisien [13][14] [15].…”
Section: B Support Vector Machinesunclassified
“…SVM has advantages, and as mentioned by [9] they are: SVM produces accurate result classification result on theoretical basis, even when input data are non-linearly separable. Also, the accuracy result does not rely on the quality of human expertise judgment for choice of the linearization function for non linear input data.…”
Section: Support Vector Machines (Svm)mentioning
confidence: 99%
“…A disadvantage of SVM as a non-parametric technique mentioned by [9] is its lack for transparency for results. The biggest limitation as mentioned by [10] is that which lies in the choice of the kernel.…”
Section: Support Vector Machines (Svm)mentioning
confidence: 99%
“…On the area of mining, classifying and predicting disaster-related tweets, one of the learning algorithms used to train an automatic classifier is Support Vector Machine (SVM). Classifier models produced by SVM give good classification results with high accuracy and robustness [2]. Although there are several studies involving the evaluation SVM-based classifiers that filter and predict disaster-related tweets, all of them only dealt with training and testing classifiers on a single-source domain.…”
mentioning
confidence: 99%