Augmented Reality (AR) applications can reshape our society enabling novel ways of interactions and immersive experiences in many fields. However, multi-user and collaborative AR applications pose several challenges. The expected user experience requires accurate position and orientation information for each device and precise synchronization of the respective coordinate systems in real-time. Unlike mobile phones or AR glasses running on battery with constrained resource capacity, cloud and edge platforms can provide the computing power for the core functions under the hood. In this paper, we propose a novel edge cloud based platform for multi-user AR applications realizing an essential coordination service among the users. The latency critical, computation intensive Simultaneous Localization And Mapping (SLAM) function is offloaded from the device to the edge cloud infrastructure. Our solution is built on open-source SLAM libraries and the Robot Operating System (ROS). Our contribution is threefold. First, we propose an extensible, edge cloud based AR architecture. Second, we develop a proof-of-concept prototype supporting multiple devices and building on an AI-based SLAM selection component. Third, a dedicated measurement methodology is described, including energy consumption aspects as well, and the overall performance of the system is evaluated via real experiments.