The role of aldosterone in the pathogenesis of hypertension and cardiovascular diseases has been clearly shown in congestive heart failure and endocrine hypertension due to primary aldosteronism. In resistant hypertension, defined as a failure of concomitant use of three or more different classes of antihypertensive agents to control blood pressure (BP), add-on therapy with mineralocorticoid receptor (MR) antagonists is frequently effective, which we designate as "MR-associated hypertension". The MR-associated hypertension is classified into two subtypes, that with elevated plasma aldosterone levels and that with normal plasma aldosterone levels. The former subtype includes primary aldosteronism (PA), aldosterone-associated hypertension which exhibited elevated aldosterone-to-renin ratio and plasma aldosterone levels, but no PA, aldosterone breakthrough phenomenon elicited when angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin II receptor blocker (ARB) is continued to be given, and obstructive sleep apnea. In contrast, the latter subtype includes obesity, diabetes mellitus, chronic kidney disease (CKD), and polycystic ovary syndrome (PCOS). The pathogenesis of MR-associated hypertension with normal plasma aldosterone levels is considered to be mediated by MR activation by pathways other than high aldosterone levels, such as increased MR levels, increased MR sensitivity, and MR overstimulation by other factors such as Rac1. For resistant hypertension with high plasma aldosterone levels, MR antagonist should be given as a first-line therapy, whereas for resistant hypertension with normal aldosterone levels, ARB or ACE-I should be given as a first-line therapy and MR antagonist would be given as an add-on agent.