Conductive hydrogels are compelling materials for the development of soft electronics; however, their essential attributes such as high sensitivity, excellent stretchability, and environmental stability have rarely been achieved simultaneously in one hydrogel. Herein, a Kirigami‐inspired strategy is proposed to improve organohydrogel sensitivity without sacrificing their mechanical stretchability and environmental stability . The organohydrogels with multiple interpenetrating networks are synthesized by introducing sodium alginate nanofibrils and conductive MXene nanoflakes into polymer double networks infiltrated with glycerol–water mixtures, featuring remarkable stretchability (>5000%), good sensitivity, and water retention (>30 days). The Kirigami structures are further applied to enhance strain sensitivity, achieving a gauge factor of 29.1, which is ≈5.5 times that of an unstructured organohydrogel. Using the Kirigami‐inspired sensors, a durable glove is developed for grabbing underwater objects through operating a robotic arm, demonstrating a subaqueous interactive human–machine interfacing.Meanwhile, by integrating the wearable sensor with a machine learning algorithm, a wearable Morse code intelligent recognition system is demonstrated, enabling real‐time conversion of Morse code signs into speech with superior recognition accuracy (>99%) and fast response time (≈17 ms). This work offers a new route to synthesize highly sensitive, stretchable, and extremely tolerant organohydrogels, providing a promising platform for next‐generation soft electronics.