2006
DOI: 10.4171/cmh/82
|View full text |Cite
|
Sign up to set email alerts
|

Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes

Abstract: Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes Alexandre GabardRésumé. On présente une démonstration simplifiée d'un théorème d'Ahlfors : étant donné une courbe algébrique réelle séparante, il est toujours possible d'exhiber un morphisme vers la droite dont les fibres au-dessus des points réels sont toutes exclusivement formées de points réels. Ensuite, on montre comment notre méthode, basée sur l'usage du théorème d'Abel, conduit à une meilleure bor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
31
0

Year Published

2013
2013
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 28 publications
(31 citation statements)
references
References 1 publication
0
31
0
Order By: Relevance
“…The proof of Theorem 4.2.1 is based on the existence of a proper holomorphic covering map φ : Ω → D of degree γ + l (the Ahlfors map), which was proved in [37], and on an ingenious complex analytic argument due to J. Hersch, L. Payne and M. Schiffer [54], who used it to prove inequality (4.2.2) for planar domains. In this particular case, inequality (4.2.3) is known to be sharp.…”
Section: Geometric Inequalities For Steklov Eigenvaluesmentioning
confidence: 99%
“…The proof of Theorem 4.2.1 is based on the existence of a proper holomorphic covering map φ : Ω → D of degree γ + l (the Ahlfors map), which was proved in [37], and on an ingenious complex analytic argument due to J. Hersch, L. Payne and M. Schiffer [54], who used it to prove inequality (4.2.2) for planar domains. In this particular case, inequality (4.2.3) is known to be sharp.…”
Section: Geometric Inequalities For Steklov Eigenvaluesmentioning
confidence: 99%
“…We modify the argument in [15,Theorem 2.3]. Recall that any compact surface with boundary can be properly conformally branched cover the disk D. Precisely, there exists a proper conformal branched cover ϕ : ( ,ĝ) → D of degree at most γ + k (see [27]). Here we denote by the sameĝ as the induced metric on from (M 3 ,ĝ).…”
Section: Estimate For the F -Steklov Eigenvalue And Boundary Length Omentioning
confidence: 99%
“…(3)). From 13 we know T (3) = T ∖ H and we need to prove T (1) = T ∖ H too. Because of Theorem 3.2 we know T (1) ≠ ∅︁, we assume that T (1) ≠ T ∖ H .…”
Section: Some Brill‐noether Theory For Real Pencils On Real Curvesmentioning
confidence: 99%
“…In 9 it is also proved that for each topological type (8, s , a ) ≠ {(8, 1, 0), (8, 0, 1)} there is a general real curve X having no real \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$g^1_5$\end{document}(while Theorem 4.4 implies there is a general real curve X having a real \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$g^1_5\big )$\end{document}. On the other hand, the main result of 13 implies that there is no general real curve X of topological type (8, 1, 0) having no base point free \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$g^1_5$\end{document} of topological degree (5). For real curves without real points it is proved in 20 that for each genus g there exist general real curves X of topological type ( g , 0, 1) such that \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$X^1_k(X)(\mathbb {R})\setminus W^1_k(X)(\mathbb {R})^+$\end{document} is empty for each k ≤ g .…”
Section: Some Brill‐noether Theory For Real Pencils On Real Curvesmentioning
confidence: 99%