2012
DOI: 10.1515/crelle-2012-0083
|View full text |Cite
|
Sign up to set email alerts
|

Sur un problème de compatibilité local-global modulo p pour GL2

Abstract: Abstract. Soit L une extension finie non ramifiée de ℚ p . On s'intéresse au problème de savoir si certaines des représentations de GL 2 ( … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
35
1
16

Year Published

2014
2014
2023
2023

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 26 publications
(52 citation statements)
references
References 0 publications
0
35
1
16
Order By: Relevance
“…That the family of representations containing a diagram D(ρ, ι) is infinite is unfortunate and warrants further investigation of π. One part of a Diamond diagram D(ρ, ι) is a GL 2 (k v )-representation denoted D 0 (ρ), which is a subrepresentation of π| GL2(OF v ) (see [Bre14,Proposition 9.3]), and thus a subrepresentation of the invariants of π under the first principal congruence subgroup K v (1) of GL 2 (O Fv ). Our main result is the following.…”
Section: Introductionmentioning
confidence: 99%
“…That the family of representations containing a diagram D(ρ, ι) is infinite is unfortunate and warrants further investigation of π. One part of a Diamond diagram D(ρ, ι) is a GL 2 (k v )-representation denoted D 0 (ρ), which is a subrepresentation of π| GL2(OF v ) (see [Bre14,Proposition 9.3]), and thus a subrepresentation of the invariants of π under the first principal congruence subgroup K v (1) of GL 2 (O Fv ). Our main result is the following.…”
Section: Introductionmentioning
confidence: 99%
“…We can fix a sequence (πn)n(Q¯p)boldN such that πne=pn for all nN and which is compatible with the norm maps Kfalse(πn+1false)Kfalse(πnfalse) (cf. [, Appendix A]). By letting K= def nNKn (where we let Kn= def Kfalse(πnfalse)) and (K0)= def nNK0false(pnfalse), we have a canonical isomorphism Galfalse(K/false(K0false)false)Galfalse(K/K0false) and we will identify ωπ as a character on Gal(K/(K0)).…”
Section: Integral P‐adic Hodge Theory I: Preliminariesmentioning
confidence: 99%
“…Des résultats récents d'Emerton, Gee et Savitt ( [20]) (faisant suiteà des résultats partiels dans le cas de variétés de Shimura compactesà l'infini (cf. [3]) et des calculs informatiques de Dembélé (dans le même cadre, cf. [15])) montrent que la partie ρ f -isotypique ci-dessus contient l'une des représentations de [5] (lorsque ρ f | Gal(Fv/Fv) est générique).…”
Section: Introductionunclassified
“…Le travail récent d'Emerton, Gee et Savitt ([20], voir aussi [3]) montre que, sous nos hypothèses, la GL 2 (F v )-représentation π D,v (ρ) contient un des diagrammes construits dans [5], notons le D v (ρ). Une conjecture naturelle supportée par le Théorème 1.2 ci-dessus est que D v (ρ) est entièrement local, c'est-à-dire ne dépend que de la restriction de ρà Gal(F v /F v ) (c'est par exemple le cas si {σ, x v,σ = 0} = ∅).…”
Section: Introductionunclassified
See 1 more Smart Citation