Therapies against trypanosomatid-borne diseases have evolved from the historic work of Paul Ehrlich (1), who was the first to provide a rationale for a chemotherapeutic approach in the treatment of infectious diseases. He used a series of naphthalene dyes related to trypan red and trypan blue (see Fig. 1a) and demonstrated that they had trypanocidal activity. Trypan blue successfully cleared trypanosomatid infections in mouse models but were not successful in other mammals. Ehrlich noted in his mouse trials where he tested over 50 related diazo dyes that mice treated with trypan red retained a red color for weeks and even months. This side effect was a significant drawback to its use in human therapy, and the search for a colorless analog was pursued by chemists at Bayer, who synthesized Bayer 205, now known as suramin (see Fig. 1c), which is still used in the treatment of human African trypanosomiasis (sleeping sickness) caused by the parasitic protist Trypanosoma brucei (2). Additional uses for suramin have been explored in the treatment of human cancers (3) and HIV infection (4), where it was the first drug to show antiviral activity (5). It is evident from the mass of literature that suramin is a promiscuous inhibitor of many enzymes and receptors and shows a range of interesting clinically relevant effects (6, 7). Despite following none of the currently accepted criteria for drug-likeness (8), suramin and a number of diverse analogues (9, 10) are still of clinical interest in an ever growing repertoire of diseases (11-13).Suramin has been characterized as an inhibitor of T. brucei and mammalian glycolytic enzymes (14 -16) and has been shown to inhibit all seven of the T. brucei glycolytic enzymes isolated from glycosomes (peroxisome-like organelles specific for kinetoplastid protists that harbor the first seven glycolytic enzymes converting glucose into 3-phosphoglycerate) with IC 50 values between 3 and 100 M (15). The three glycolytic enzymes found in the cytosol (phosphoglycerate mutase, enolase, and pyruvate kinase (PYK) 2 (17)) were not examined in these experiments. The importance of glycolytic enzymes for the viability of T. brucei has been confirmed by RNAi knockdown of glycosomal and cytosolic enzymes (including PYK) with consequent death of the parasite (18,19