Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP) has attracted great attention in the past two decades because of its high efficiency in decorating material surfaces with functional polymer brushes. To fill the vacancy of review articles in SI-ROMP, this article is aimed at giving an overview of the history, the general features and procedures, and applications of SI-ROMP, guiding future researchers in this field. In general, SI-ROMP consists of three main steps: surface functionalization with olefin anchors, attachment of catalyst to the surface, and polymerization from the surface. Several metal-based catalysts for ROMP in solution have been developed, but most SI-ROMP reactions use the ruthenium-based Grubbs catalysts. SI-ROMP enables the rapid growth of polymer films on a large variety of substrates such as silica, gold, graphene oxides, carbon nanotubes, metal oxide nanowires, and composite polymer membranes. There are many methods to characterize these polymer brushes. In addition, some novel techniques have been developed to precisely control the surface polymer growth and lead to polymer films with unique structures and functions. Up to this day, SI-ROMP can be applied to the surface engineering of many novel materials, including ultrahydrophobic surfaces, microfluidic channels, electric devices, ion exchange media, and responsive surfaces.