When the wind speed decreases below a certain value (1-2 m s À1 ) meandering (low frequency horizontal wind oscillations) starts to prevail. In these conditions it becomes difficult to define a precise mean wind direction and to estimate the airborne dispersion. To study the wind and turbulence characteristics during meandering, two sonic anemometer datasets, containing hourly wind observations, were analysed: the first one, lasting 1 year, was recorded in complex terrain (Graz, Austria) and the second one, lasting about 1 month, was recorded in a rather flat area (Tisby, Sweden). It was found that meandering seems to exist under all meteorological conditions regardless of the stability or wind speed and it was confirmed that meandering sets a lower limit for the horizontal wind component variances. Further, it was found that the autocorrelation functions of the horizontal wind components, computed for the low wind cases, show an oscillating behaviour with the presence of large negative lobes. Two different relationships from the literature, and relevant to these oscillatory aspects, were fitted to the data. They contain two parameters: one associated and relevant to the classical integral time scale and the second with meandering occurrence. Based on these relationships, expressions for the mean square displacement of particles r 2 y ðtÞ were also derived.