Magnesium alloys have been widely investigated as biodegradable cardiovascular temporal implants due to their better mechanical properties and biocompatibility, but the rapid degradation limited its application. In this study, the anodic oxidation-Cu structure was used to improve the adhesive strength and stability between poly-β-hydroxybutyrate (PHB) and magnesium alloys, and the effects of anodic oxidation magnesium alloys with copper film and PHB film (MACP) on human umbilical vein endothelial cells (HUVECs), blood compatibility and antibacterial properties were investigated in this research. As the result, the MACP structure had a stable structure and better corrosion resistance, and significant antibacterial properties. The coating would not affect the original excellent biocompatibility of the magnesium alloy. It was indicated that MACP was a potential surface modification strategy for vascular stents candidate material.