A virtual impedance-based flying start considering transient characteristics for permanent magnet synchronous machine drive systems is proposed. The conventional flying start based on virtual resistance (VR) assumes that the load of the system is resistive. However, the maximum value of VR, which is determined by the machine parameter and sampling frequency, is sometimes small. In this case, the load of the system is non-resistive. This assumption error causes an estimated position error and degrades transient characteristics. In the proposed method, algebraic-type virtual inductance (VI) is added to the estimation current regulator of the flying start based on VR. This change improves the accuracy of the estimated rotor position and the transient characteristics. In addition, the discrete-time system model of the proposed flying start method is given, the stability was analyzed considering the change in VR caused by the proposed method, and the improvements were verified by PSIM simulations and experimental results.