The use of series architecture nowadays is mainly on hybrid buses. In comparison with series-parallel and parallel architectures, which are usually exploited on medium-size cars, the series architecture allows achieving internal combustion engine higher efficiency. The downside of this architecture, due to a double energy conversion (i.e., mechanical energy converted in electrical energy and electrical energy converted again in mechanical energy), is that additional losses are introduced. For this reason, the parallel and the series/parallel architectures were considered more suitable for hybrid medium-size cars. Nevertheless, the use of new technologies can change this scenario. Regarding storage systems, supercapacitors achieved a significant energy density, and they guarantee much higher efficiency than battery storage. Moreover, the use of wide-bandgap components for power electronic converters, such as silicon carbide devices, assure lower losses. In this scenario, the series architecture can become competitive on medium-size cars. This paper shows a review of various studies performed on this topic.
Asynchronous machines are always widely used in most industrial applications due to their reliability, flexibility, and manoeuvrability. To achieve variable speed operations, the quite simple open-loop V/Hz control is largely utilized. Under open-loop V/Hz control, the nonlinear interaction is well known to cause current and torque oscillations while operating at low to medium speeds under light loads. This article presents the stability analysis of induction motors at low–medium frequencies under no-load conditions with the V/Hz control. A system representation in the form of state space is discussed, and the region of instability is plotted against the V/f plane. Two novel and refined methods for the mitigation of oscillations in the region of instability are presented. The two proposed algorithms are finally tested and validated through simulation on an inverter-fed induction motor drive system.
Sensorless control of permanent magnet synchronous motors is nowadays used in many industrial, home and traction applications, as it allows the presence of a position sensor to be avoided with benefits for the cost and reliability of the drive. An estimation of the rotor position is required to perform the field-oriented control (FOC), which is the most common control scheme used for this type of motor. Many algorithms have been developed for this purpose, which use different techniques to derive the rotor angle from the stator voltages and currents. Among them, the so-called passive methods have gained increasing interest as they do not introduce additional losses and current distortion associated instead with algorithms based on the injection of high-frequency signals. The aim of this paper is to present a review of the main passive sensorless methods proposed in the technical literature over the last few years, analyzing their main features and principles of operation. An experimental comparison among the most promising passive sensorless algorithms is then reported, focusing on their performance in the low-speed operating region.
Sensorless algorithms for Permanent Magnet Synchronous Motors (PMSM) have achieved increasing interest in the technical literature over the last few years. They can be divided into active methods and passive methods: the first inject high-frequency signals exploiting rotor anisotropy, whereas the second are based on observers. Recently, a sensorless control based on a rotor flux observer has been presented in the technical literature, which gives very accurate results in terms of rotor position estimation and robustness. In this paper, the aforementioned observer is considered and a procedure for choosing stabilizing gains of the observer is proposed. The contribution of the paper is three-fold: the mathematical modelling of the rotor flux observer, the methodology for the definition of the observer gains, and the presentation of the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.