The efficient removal, capture, and recycling of ammonia (NH3) constitutes a demanding process, thus the development of competent adsorbent materials is highly desirable. The implementation of metal-organic frameworks (MOFs), known for their tunability and high porosity, has attracted much attention for NH3 adsorption studies. Here, we report three isoreticular porphyrin-based MOFs containing aluminum (Al-PMOF), gallium (Ga-PMOF), and indium (In-PMOF) rod secondary building units with Brønsted acidic bridging hydroxyl groups. NH3 sorption isotherms in Al-PMOF demonstrated reversibility in isotherms. In contrast, the slopes of the adsorption isotherms in Ga-PMOF and In-PMOF were much steeper than Al-PMOF in lower pressure regions, with a decrease of NH3 adsorbed amounts observed between first cycle and second cycle measurements. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) suggested that the strength of the Brønsted acidic -OH sites was controlled by the identity of the metal, which resulted in stronger interactions between ammonia and the framework in Ga-PMOF and In-PMOF compared to Al-PMOF.