The role of complement activation by artificial surfaces relative to inflammatory response is not well understood. This study was performed to evaluate the inflammatory cell recruitment, distribution, and ex vivo metabolic activation of surfaces with different plasma protein adsorption and complement activation properties in vitro. The implants were (1) pure gold (reference), (2) albumin-precoated (3) IgG-precoated gold, and (4) 3-mercapto-1, 2-propanediol [mercaptoglycerol (MG)] and (5) glutathione (GSH) immobilized to gold. The implant disks were inserted subcutaneously in rats for 24 h, and the number of inflammatory cells that were recruited to the implant adjacent to the surrounding fluid phase (exudate) and the surfaces were quantified by DNA measurements. The oxidative burst was analyzed ex vivo using spontaneous and phorbol myristate acetate (PMA)-stimulated, luminol-enhanced chemiluminescence (CL). The in vitro surface-induced anti-rat C3 binding was evaluated by ellipsometry and antibody techniques after plasma incubations for 1 and 30 min. The ellipsometric results showed that immobilized mercaptoglycerol and IgG-coated, but not the immobilized glutathione or the reference Au, bound anti-C3. The in vivo results revealed that the largest amount of cells was associated with the IgG-coated surfaces, followed by immobilized GSH and MG, albumin-coated, and gold surfaces, respectively. No spontaneous ex vivo luminol-enhanced CL was recorded from the cells irrespective of surface functionality or localization. A down-regulation of surface-associated and exudate leukocyte CL was observed ex vivo, irrespective of surface functionality. The results do not indicate a clear relationship between the degree of complement activation in vitro and leukocyte recruitment and adhesion in vivo for differently functionalized surfaces.