Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The paper deals with the computational framework for the numerical simulation of the three dimensional fluid-filled fracture evolution in a poroelastic medium. The model consists of several groups of equations including the Biot poroelastic model to describe a bulk medium behavior, Reynold’s lubrication equations to describe a flow inside fracture and corresponding bulk/fracture interface conditions. The geometric model of the fracture assumes that it is described as an arbitrary sufficiently smooth surface with a boundary. Main attention is paid to describing numerical algorithms for particular problems (poroelasticity, fracture fluid flow, fracture evolution) as well as an algorithm for the coupled problem solution. An implicit fracture mid-surface representation approach based on the closest point projection operator is a particular feature of the proposed algorithms. Such a representation is used to describe the fracture mid-surface in the poroelastic solver, Reynold’s lubrication equation solver and for simulation of fracture evolutions. The poroelastic solver is based on a special variant of X-FEM algorithms, which uses the closest point representation of the fracture. To solve Reynold’s lubrication equations, which model the fluid flow in fracture, a finite element version of the closet point projection method for PDEs surface is used. As a result, the algorithm for the coupled problem is purely Eulerian and uses the same finite element mesh to solve equations defined in the bulk and on the fracture mid-surface. Finally, we present results of the numerical simulations which demonstrate possibilities of the proposed numerical techniques, in particular, a problem in a media with a heterogeneous distribution of transport, elastic and toughness properties.
The paper deals with the computational framework for the numerical simulation of the three dimensional fluid-filled fracture evolution in a poroelastic medium. The model consists of several groups of equations including the Biot poroelastic model to describe a bulk medium behavior, Reynold’s lubrication equations to describe a flow inside fracture and corresponding bulk/fracture interface conditions. The geometric model of the fracture assumes that it is described as an arbitrary sufficiently smooth surface with a boundary. Main attention is paid to describing numerical algorithms for particular problems (poroelasticity, fracture fluid flow, fracture evolution) as well as an algorithm for the coupled problem solution. An implicit fracture mid-surface representation approach based on the closest point projection operator is a particular feature of the proposed algorithms. Such a representation is used to describe the fracture mid-surface in the poroelastic solver, Reynold’s lubrication equation solver and for simulation of fracture evolutions. The poroelastic solver is based on a special variant of X-FEM algorithms, which uses the closest point representation of the fracture. To solve Reynold’s lubrication equations, which model the fluid flow in fracture, a finite element version of the closet point projection method for PDEs surface is used. As a result, the algorithm for the coupled problem is purely Eulerian and uses the same finite element mesh to solve equations defined in the bulk and on the fracture mid-surface. Finally, we present results of the numerical simulations which demonstrate possibilities of the proposed numerical techniques, in particular, a problem in a media with a heterogeneous distribution of transport, elastic and toughness properties.
The work investigates the importance of the K-T approach in the modelling of pressure cracked structures. T-stress is the constant in the second term of the Williams expression; it is often negligible, but recent literature has shown that there are cases where T-stress plays the role of opening the crack, also T-stress improves elastic modeling at the point of crack. In this research study, the most important effects of the T-stress are collected and analyzed. A numerical analysis was carried out by the extended finite element method (X-FEM) to analyze T-stress in an arc with external notch under internal pressure. The different stress method (SDM) is employed to calculate T-stress. Moreover, the influence of the geometry of the notch on the biaxiality is also examined. The biaxiality gave us a view on the initiation of the crack. The results are extended with a comparison to previous literature to validate the promising investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.