We present a review of state-of-the art X-ray imaging techniques based on partially coherent synchrotron radiation. Full-field X-ray tomography, X-ray ptychography, scanning small-angle X-ray scattering, and scanning transmission X-ray microscopy are imaging techniques that gather structural information at spatial resolution ranging from several microns to a few tens of nanometers in both real-and reciprocal space. These methods exploit contrast mechanisms based on absorption, phase, and spectroscopic signals. We provide examples of how these techniques can be applied to address scientific questions ranging from imaging of biological samples, to foam rheology, and cement composition.