Climate change is expected to alter the environmental suitability of land use and land cover (LULC) classes globally. In this study, we investigated the potential impacts of climate change on the environmental suitability of the most representative LULC classes in the southern Brazilian semiarid region. We employed the Random Forest algorithm trained with climatic, soil, and topographic data to project future LULC suitability under the Representative Concentration Pathway RCP 2.6 (optimistic) and 8.5 (pessimistic) scenarios. The climate data included the mean annual air temperature and precipitation from the WorldClim2 platform for historical (1970–2000) and future (2061–2080) scenarios. Soil data were obtained from the SoilGrids 2.1 digital soil mapping platform, while topographic data were produced by NASA’s Shuttle Radar Topography Mission (SRTM). Our model achieved an overall accuracy of 60%. Under the worst-case scenario (RCP 8.5), croplands may lose approximately 8% of their suitable area, while pastures are expected to expand by up to 30%. Areas suitable for savannas are expected to increase under both RCP scenarios, potentially expanding into lands historically occupied by forests, grasslands, and eucalyptus plantations. These projected changes may lead to biodiversity loss and socioeconomic disruptions in the study area.