Residential, commercial, and industrial lighting applications contribute to ~19% of total energy consumption worldwide. The application of more efficient sources of lighting, such as solid-state lighting (SSL) sources, could result in potential energy savings of about 65%. Current technologies employ semiconductor-based light-emitting diodes (LEDs) as the core elements of SSL devices to provide generalpurpose light in a wide range of color temperatures. However, there still exists several device level issues, such as poor material quality, low quantum efficiencies, large percentage of light being trapped, etc. These non-idealities are barriers for SSL sources replacing incandescent and compact fluorescent sources on an equivalent lumens-per-watt basis. WVU SSL research interests involve addressing device-level issues associated with III-V nitride materials, as well as optimizing the growth of materials and performance of fabricated devices. One major goal of research efforts is to provide solutions for improvement in light extraction in III-nitride-based devices Dawson for his guidance towards my thesis work. Dr. Dawson's wisdom, patience and constant encouragement are some of the reasons that have made the findings in this thesis possible.