Sphincter of Oddi dysfunction is one of the most important symptoms in post-cholecystectomy syndrome. Using either electrical or mechanical stimulation and retrogradely transported neuronal dyes, it has been demonstrated that there are direct neural pathways connecting gall bladder and the sphincter of Oddi in the Australian opossum and the golden hamster. In the present study, we employed whole-mount immunohistochemistry staining to observe and verify that there are two different plexuses of the extrahepatic biliary tract in Suncus murinus. One, named Pathway One, showed a fine, irregular but dense network plexus that ran adhesively and resided on/in the extrahepatic biliary tract wall, and the plexus extended into the intrahepatic area. On the other hand, named Pathway Two, exhibiting simple, thicker and straight neural bundles, ran parallel to the surface of the extrahepatic biliary tract and passed between the gall bladder and duodenum, but did not give off any branches to the liver. Pathway Two was considered to involve direct bidirectional neural connections between the duodenum and the biliary tract system. For the first time, morphologically, we demonstrated direct neural connections between gall bladder and duodenum in S. murinus. Malfunction of the sphincter of Oddi may be caused by injury of the direct neural pathways between gall bladder and duodenum by cholecystectomy. From the viewpoint of preserving the function of the major duodenal papilla and common bile duct, we emphasize the importance of avoiding kocherization of the common bile duct so as to preserve the direct neural connections between gall bladder and sphincter of Oddi.