Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)
Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACTThis study presents results from detailed experiments of the two-phase pressurized flow behavior during the rapid filling of a large-scale pipeline. The physical scale of this experiment is close to the practical situation in many industrial plants. Pressure transducers, water level meters, thermometers, void fraction meters and flow meters were used to measure the two-phase unsteady flow dynamics. The main focus is on the water-air interface evolution during filling and the overall behavior of the lengthening water column. It is observed that the leading liquid front does not entirely fill the pipe cross section; flow stratification and mixing occurs. Although flow regime transition is a rather complex phenomenon, certain features of the observed transition pattern are explained qualitatively and quantitatively. The water flow during the entire filling behaves as a rigid column as the open empty pipe in front of the water column provides sufficient room for the water column to occupy without invoking air compressibility effects. As a preliminary evaluation of how these large-scale experiments can feed into improving mathematical modeling of rapid pipe filling, a comparison with a typical one-dimensional rigid-column model is made.