The theory of minimum rate of energy dissipation states that a system is in an equilibrium condition when its rate of energy dissipation is at its minimum value. This minimum value depends on the constraints applied to the system. When a system is not at equilibrium, it will adjust in such a manner that the rate of energy dissipation can be reduced until it reaches the minimum and regains equilibrium. A river system constantly adjusts itself in response to varying constraints in such a manner that the rate of energy dissipation approaches a minimum value and thus moves toward an equilibrium. It is shown that the values of the exponents of the hydraulic geometry relationships proposed by Leopold and Maddock for rivers can be obtained from the application of the theory of minimum rate of energy dissipation in conjunction with the Manning‐Strickler equation and the dimensionless unit stream power equation for sediment transport proposed by Yang. Theoretical analysis is limited to channels which are approximately rectangular in shape. The width and depth exponents thus derived agree very well with those measured in laboratory experiments by Barr et al. Although the theoretical width and depth exponents are within the range of variations of measured data from river gaging stations, the at‐station width adjustment of natural rivers may also depend on constraints other than water discharge and sediment load.
Substitution of a pyridyl for the hydroxyphenyl moiety in the Green Fluorescent Protein analog p-hydroxybenzylidene-dimethylimidiazolinone produces a chromophore which "turns on" fluorescence in the presence of Zn(2+) or Cd(2+) ions. Such a phenomenon provides "proof of principle" for using GFP chromophores in a variety of sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.