Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context. To obtain more details about the lunar interior, a station at Table Mountain Observatory of JPL will enable a new measurement of lunar laser ranging (LLR), known as differential lunar laser ranging (DLLR). It will provide a novel type of observable, namely, the lunar range difference, which is the difference of two consecutive ranges obtained via a single station swiftly switching between two or more lunar reflectors. This previously unavailable observation will have a very high level of accuracy (about 30 µm), mainly resulting from a reduction in the Earth's atmospheric error. In addition to the intended improvements for the lunar part, it is expected to contribute to improved relativity tests, for instance, the equivalence principle (EP). Aims. This paper focuses on the simulation and investigation of the characteristics of DLLR. Methods. Using simulated DLLR data, we analyzed and compared the parameter sensitivity, correlation, and accuracy obtained by DLLR with those attained by LLR. Results. The DLLR measurement maintains almost the same sensitivity to certain parameters (called group A) as that of LLR, such as the lunar orientation parameters. For other parameters (called group B), such as station coordinates, it is shown to be less sensitive. However, owing to its extraordinary measurement accuracy, it not only retains nearly the same level of accuracy of group B as LLR, but it also improves the estimation of group A significantly (with the exception of reflector coordinates, due to the DLLR measuring mode). Also, DLLR increases the correlations among the reflectors and between stations and reflectors caused by its constellation. Additionally, we compared different switching intervals with respect to sensitivity and correlation. Large switching intervals are more beneficial for group B and the decorrelation of stations and reflectors. Furthermore, DLLR enhances the accuracy of EP tests.
Context. To obtain more details about the lunar interior, a station at Table Mountain Observatory of JPL will enable a new measurement of lunar laser ranging (LLR), known as differential lunar laser ranging (DLLR). It will provide a novel type of observable, namely, the lunar range difference, which is the difference of two consecutive ranges obtained via a single station swiftly switching between two or more lunar reflectors. This previously unavailable observation will have a very high level of accuracy (about 30 µm), mainly resulting from a reduction in the Earth's atmospheric error. In addition to the intended improvements for the lunar part, it is expected to contribute to improved relativity tests, for instance, the equivalence principle (EP). Aims. This paper focuses on the simulation and investigation of the characteristics of DLLR. Methods. Using simulated DLLR data, we analyzed and compared the parameter sensitivity, correlation, and accuracy obtained by DLLR with those attained by LLR. Results. The DLLR measurement maintains almost the same sensitivity to certain parameters (called group A) as that of LLR, such as the lunar orientation parameters. For other parameters (called group B), such as station coordinates, it is shown to be less sensitive. However, owing to its extraordinary measurement accuracy, it not only retains nearly the same level of accuracy of group B as LLR, but it also improves the estimation of group A significantly (with the exception of reflector coordinates, due to the DLLR measuring mode). Also, DLLR increases the correlations among the reflectors and between stations and reflectors caused by its constellation. Additionally, we compared different switching intervals with respect to sensitivity and correlation. Large switching intervals are more beneficial for group B and the decorrelation of stations and reflectors. Furthermore, DLLR enhances the accuracy of EP tests.
At present, tracking data for planetary missions largely consists of radio observables: range-rate (Doppler), range and angular position (VLBI/ DOR). Future planetary missions may use Interplanetary Laser Ranging (ILR) as a tracking observable. Two-way ILR will provide range data that are about 2 orders of magnitude more accurate than radio-based range data. ILR does not produce Doppler data, however. In this article, we compare the relative strength of radio Doppler and laser range data for the retrieval of parameters of interest in planetary missions, to clarify and quantify the science case of ILR, with a focus on geodetic observables. We first provide an overview of the near-term attainable quality of ILR, in terms of both the realization of the observable and the models used to process the measurements. Subsequently, we analyse the sensitivity of radio Doppler and laser range measurements in representative mission scenarios for parameters of interest. We use both an analytical approximation and numerical analyses of the relative sensitivity of ILR and radio Doppler observables for more general cases. We show that mm-precise range normal points are feasible for ILR, but mm-level accuracy and stability in the full analysis chain are unlikely to be attained, due to a combination of instrumental and model errors. We find that ILR has the potential for superior performance in observing signatures in the data with a characteristic period of greater than 0.33-1.65 hours (assuming 2-10 mm uncertainty for range and 10 µm/s at 60 s for Doppler). This indicates that Doppler tracking will typically remain the method of choice for gravity field determination and spacecraft orbit determination in planetary missions. ILR data will be able to supplement the orbiter tracking data used for the estimation of parameters with a once-per-orbit signal. Laser ranging data, however, are shown to have a significant advantage for the retrieval of rotational and tidal characteristics from landers. Similarly, laser ranging data will be superior for the construction of planetary ephemerides and the improvement of solar system tests of gravitation, both for orbiter and for lander missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.