Handwritten signatures are widely used for identity authorization. However, verifying handwritten signatures is cumbersome in practice due to the dependency on extra drawing tools such as a digitizer, and because the false acceptance of a forged signature can cause damage to property. Therefore, exploring a way to balance the security and user experiment of handwritten signatures is critical. In this paper, we propose a handheld signature verification scheme called SilentSign, which leverages acoustic sensors (i.e., microphone and speaker) in mobile devices. Compared to the previous online signature verification system, it provides handy and safe paper-based signature verification services. The prime notion is to utilize the acoustic signals that are bounced back via a pen tip to depict a user’s signing pattern. We designed the signal modulation stratagem carefully to guarantee high performance, developed a distance measurement algorithm based on phase shift, and trained a verification model. In comparison with the traditional signature verification scheme, SilentSign allows users to sign more conveniently as well as invisibly. To evaluate SilentSign in various settings, we conducted comprehensive experiments with 35 participants. Our results reveal that SilentSign can attain 98.2% AUC and 1.25% EER. We note that a shorter conference version of this paper was presented in Percom (2019). Our initial conference paper did not finish the complete experiment. This manuscript has been revised and provided additional experiments to the conference proceedings; for example, by including System Robustness, Computational Overhead, etc.