To better understand how safety factors of biological structures evolve, we examined the frequency of claw failure, and the intra-and interspecific patterns of variation in maximum biting force and breaking strength in the claws of six species of Cancer (Linnaeus) crabs that live in sympatry along the coast of the northeastern Pacific: C. antennarius, C. branneri, C. gracilis, C. magister, C. oregonensis and C. productus. Although the breakage frequencies in natural populations were similar among species (≈ 6%), they were higher than predicted based on failure probabilities calculated from laboratory measurements of biting force and breaking strength for healthy pristine claws. The incidence of claw damage was correlated with the degree of wear, suggesting that claws later in the intermolt interval were more likely to fail. Within species, safety factors increased from 3.1 to 4.6 with increasing instar number due primarily to a decline in muscle stress (force per unit area of apodeme). Surprisingly, the lower maximum muscle stress generated by later instars appeared to be due to behavioral restraint, since it was not accompanied by relatively lower muscle mass. In addition, among individuals of the same claw size, lower breaking forces were correlated with lower maximum biting force, and both were correlated with lighter cuticle and closer muscle mass, suggesting a coupling that maintains a more stable safety factor over the moult cycle. In some species, size-adjusted maximum biting forces were higher for males than females, but this paralleled differences in breaking strength, so safety factors did not differ between the sexes. Among the six Cancer species, one exhibited an unusually high safety factor (C. oregonensis, 7.4) and another an unusually low one (C. magister, 2.6). The remaining four species were similar to each other and exhibited an intermediate safety factor (3.6). From a phylogenetic perspective, the species with more extreme safety factors appeared to be derived from a common ancestor with an intermediate safety factor. From an ecological perspective, species more closely associated with rocky substrata, and presumably a higher incidence of hard-shelled prey, exhibited higher safety factors. But safety factors were also correlated with relative claw size, and sexual dimorphism in claw size. Although we cannot say whether habitat, diet or sexual selection are primarily responsible for the differences in safety factors observed among species, the cost of producing a relatively larger claw seems an unlikely explanation because safety factors did not differ between males and females in any of the sexually dimorphic species.