Allozymes from 46 loci were analyzed from chum salmon (Oncorhynchus keta) collected at 61 locations in southeast Alaska and northern British Columbia. Of the 42 variable loci, 21 had a common allele frequency <0.95. We observed significant heterogeneity within and among six regional groups: central southeast Alaska, Prince of Wales Island area, southern southeast Alaska – northern British Columbia, north-central British Columbia, and two groups in the Queen Charlotte Islands. Genetic variation among regions was significantly greater than within regions. The three island groups were distinct from each other and from the mainland populations. Allele frequencies were stable over time in 14 of 15 locations sampled for more than 1 yr. The geographic basis for heterogeneity among regions is confounded in part by spawning-time differences. The Prince of Wales and Queen Charlotte populations spawn in the fall; the mainland populations spawn mainly in the summer, although some overlap exists. Overall, most genetic diversity (97%) occurred within sampling locations; the remaining diversity was distributed almost equally within and among regions. Our genetic data may provide fishery managers a means to estimate stock composition in the mixed-stock fisheries near this boundary between the United States and Canada.
Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer-run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.